Gujarati
Hindi
2.Motion in Straight Line
normal

A particle is projected vertically upwards from a point $A$ on the ground. It takes time $t_1$ to  reach a point $B$, but it still continues to move up. If it takes further $t_2$ time to reach the  ground from point $B$. Then height of point $B$ from the ground is-

A

$\frac{1}{2} g(t_1 + t_2)^2$

B

$g\, t_1\, t_2$

C

$\frac{1}{8} g(t_1 + t_2)^2$

D

$\frac{1}{2} g t_1 \, t_2$

Solution

$\mathrm{h}=\mathrm{ut}_{1}-\frac{1}{2} \mathrm{gt}_{1}^{2}$

$\mathrm{O}=\mathrm{u}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)-\frac{1}{2} \mathrm{g}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}$

so $\mathrm{u}=\mathrm{g}\left(\frac{\mathrm{t}_{1}+\mathrm{t}_{2}}{2}\right)$

$\mathrm{h}=\mathrm{g}\left(\frac{\mathrm{t}_{1}+\mathrm{t}_{2}}{2}\right) \mathrm{t}_{1}-\frac{1}{2} \mathrm{gt}_{1}^{2}$

$=\frac{\mathrm{gt}_{1} \mathrm{t}_{2}}{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.